Derived Algebraic Geometry II: Noncommutative Algebra
ثبت نشده
چکیده
1 Monoidal ∞-Categories 4 1.1 Monoidal Structures and Algebra Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Cartesian Monoidal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Subcategories of Monoidal ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Free Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5 Limits and Colimits of Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.6 Monoidal Model Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.7 Digression: Segal Monoidal ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
منابع مشابه
Derived Algebraic Geometry II: Noncommutative Algebra
1 Monoidal ∞-Categories 4 1.1 Monoidal Structures and Algebra Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Cartesian Monoidal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Subcategories of Monoidal ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Free Algebras . . . . . . . . . . . . . . . . . . ....
متن کاملDerived Algebraic Geometry II: Noncommutative Algebra
1 Monoidal ∞-Categories 4 1.1 Monoidal Structures and Algebra Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Cartesian Monoidal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Subcategories of Monoidal ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Free Algebras . . . . . . . . . . . . . . . . . . ....
متن کاملDerived Algebraic Geometry II: Noncommutative Algebra
1 Monoidal ∞-Categories 4 1.1 Monoidal Structures and Algebra Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Cartesian Monoidal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Subcategories of Monoidal ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Free Algebras . . . . . . . . . . . . . . . . . . ....
متن کاملAlgebraic Noncommutative Geometry
A noncommutative algebra A, called an algebraic noncommutative geometry, is defined, with a parameter ε in the centre. When ε is set to zero, the commutative algebra A0 of algebraic functions on an algebraic manifold M is obtained. This A0 is a subalgebra of Cω(M), which is dense if M is compact. The generators of A define an immersion of M into Rn, and M inherits a Poisson structure as the lim...
متن کاملComputer Algebra of Vector Bundles, Foliations and Zeta Functions and a Context of Noncommutative Geometry
We present some methods and results in the application of algebraic geometry and computer algebra to the study of algebraic vector bundles, foliations and zeta functions. A connection of the methods and results with noncommutative geometry will be consider.
متن کامل